Derek DeSantis

Los Alamos National Laboratory Center for Nonlinear Studies

Canadian Operator Symposium, May 2020

イロト (日下 (日下 (日下)))

Program Outline

L_Motivation - Frames

Background

• A sequence $\{f_n\}$ in a Hilbert space \mathscr{H} is called a **frame** if there exists constants 0 < A < B such that for each $x \in \mathscr{H}$,

$$A||x||^2 \le \sum_n |\langle x, f_n \rangle|^2 \le B||x||^2$$

イロト (日下 (日下 (日下)))

Program Outline

└─Motivation - Frames

Background

• A sequence $\{f_n\}$ in a Hilbert space \mathscr{H} is called a **frame** if there exists constants 0 < A < B such that for each $x \in \mathscr{H}$,

$$A||x||^2 \le \sum_n |\langle x, f_n \rangle|^2 \le B||x||^2$$

• We can associate to each frame $\{f_n\}$ a dual frame $\{g_n\}$ such that

$$x = \sum_{n} \langle x, g_n \rangle f_n$$

◆□ ▶ ◆□ ▶ ★ □ ▶ ★ □ ▶ ● ○ ○ ○

Program Outline

└─Graph C*-Algebras

Remark

C*-algebras generated by partial isometries (graph algebras) are well studied.

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

Program Outline

└─Graph C*-Algebras

Remark

C*-algebras generated by partial isometries (graph algebras) are well studied.

$$E = \{r, s, E^0, E^1\}$$
:

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● ○○○

Program Outline

└─Closed Range Operators

Remark

If $\{f_k\}$ frame for \mathcal{H} , and T has closed range, then $\{Tf_k\}$ is a frame for $T\mathcal{H}$.

Program Outline

Closed Range Operators

Remark

If $\{f_k\}$ frame for \mathcal{H} , and T has closed range, then $\{Tf_k\}$ is a frame for $T\mathcal{H}$.

Definition

Let $T \in \mathcal{B}(\mathcal{H})$ have closed range. There is a unique operator $T^{\dagger} \in \mathcal{B}(\mathcal{H})$ called the **Moore-Penrose inverse of T** such that

◆□▶ ◆□▶ ◆□▶ ◆□▶ = ● のへ⊙

$$T^{\dagger}Tx = x \text{ for all } x \in \ker(T)^{\perp}$$

2
$$T^{\dagger}y = 0$$
 for all $y \in (T\mathscr{H})^{\perp}$.

└─Program Outline

└─<u>Closed</u> Range Operators

Example

• If T is an isometry, then $T^{\dagger} = T^*$.

Program Outline

└─Closed Range Operators

Example

- If T is an isometry, then $T^{\dagger} = T^*$.
- Let $T \in \mathscr{B}(\ell^2)$ be given by $Te_n = w_n e_n, n \ge 0$. If $0 < c < |w_n|$, then T is left invertible and

$$T^{\dagger}e_{n} = \begin{cases} 0 & n = 0\\ w_{n}^{-1}e_{n-1} & n \ge 1 \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Program Outline

∟_{Research} Program

Program

For each edge e in Γ , pick operators $\{T_e\}_{e \in E^1}$ with closed range subject to constraints of graph. Analyze the structure of the operator algebra

$$\mathfrak{A}_{\Gamma} := \overline{\operatorname{Alg}}(\{T_e, T_e^{\dagger}\}_{e \in E^1}).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ = ● のへ⊙

Program Outline

└─Research Program

Program

For each edge e in Γ , pick operators $\{T_e\}_{e \in E^1}$ with closed range subject to constraints of graph. Analyze the structure of the operator algebra

$$\mathfrak{A}_{\Gamma} := \overline{\operatorname{Alg}}(\{T_e, T_e^{\dagger}\}_{e \in E^1}).$$

Remark

Our focus is on representations afforded by the graph

 \square The Algebra \mathfrak{A}_T

Focus

Let T be a left invertible operator, and T^{\dagger} its Moore-Penrose inverse. Set

$$\mathfrak{A}_T := \overline{\mathrm{Alg}}(T, T^{\dagger}).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

 $\ \ \Box_{\mathrm{The \ Algebra}} \mathfrak{A}_{T}$

 $L_{\text{Definition}}$

Focus

Let T be a left invertible operator, and T^{\dagger} its Moore-Penrose inverse. Set

$$\mathfrak{A}_T := \overline{\mathrm{Alg}}(T, T^{\dagger}).$$

Question

In what way does \mathfrak{A}_T look like the C*-algebra generated by an isometry?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\ \ \, \sqsubseteq_{\mathrm{The \ Algebra}} \mathfrak{A}_T \\$

 $L_{\text{Definition}}$

Focus

Let T be a left invertible operator, and T^{\dagger} its Moore-Penrose inverse. Set

$$\mathfrak{A}_T := \overline{\mathrm{Alg}}(T, T^{\dagger}).$$

Question

In what way does \mathfrak{A}_T look like the C*-algebra generated by an isometry?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

2 What are the isomorphism classes of \mathfrak{A}_T ?

 \square The Algebra \mathfrak{A}_T

Wold Decomposition

Example

If $T = M_z$ on $H^2(\mathbb{T})$, then \mathfrak{A}_T is the classic Toeplitz algebra $\mathcal{T} = \{T_f + K : f \in C(\mathbb{T}), K \in \mathscr{K}(H^2(\mathbb{T}))\}$

イロト (日下 (日下 (日下)))

 \square The Algebra \mathfrak{A}_T

Wold Decomposition

Example

If $T = M_z$ on $H^2(\mathbb{T})$, then \mathfrak{A}_T is the classic Toeplitz algebra

$$\mathcal{T} = \{T_f + K : f \in C(\mathbb{T}), K \in \mathscr{K}(H^2(\mathbb{T}))\}$$

Remark

General left invertibles have no Wold decomposition:

$$\mathscr{H} \neq \left(\bigcap_n T^n \mathscr{H} \right) \oplus \left(\bigvee_n T^n \ker(T^*) \right)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 = のへで

 \square The Algebra \mathfrak{A}_T

 ${ \sqsubseteq_{\rm Wold \ Decomposition} }$

Definition

A left invertible operator T is called **analytic** if

$$\bigcap_n T^n \mathscr{H} = 0$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

 \square The Algebra \mathfrak{A}_T

Wold Decomposition

Definition

A left invertible operator T is called **analytic** if

$$\bigcap_n T^n \mathscr{H} = 0$$

Theorem (D-)

Let T be an analytic left invertible with ind(T) = -n for some positive integer n. Let $\{x_{i,0}\}_{i=1}^{n}$ be an orthonormal basis for $ker(T^*)$. Then

 \square The Algebra \mathfrak{A}_T

Wold Decomposition

Definition

A left invertible operator T is called **analytic** if

$$\bigcap_n T^n \mathscr{H} = 0$$

Theorem (D-)

Let T be an analytic left invertible with ind(T) = -n for some positive integer n. Let $\{x_{i,0}\}_{i=1}^{n}$ be an orthonormal basis for $ker(T^*)$. Then

$$x_{i,j} := (T^{\dagger^*})^j (x_{i,0})$$

 $i = 1, \dots n, \ j = 0, 1, \dots$ is a Schauder basis for \mathscr{H}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Cowen-Douglas Operators

 $L_{\text{Definition}}$

Definition

An operator $R \in \mathscr{B}(\mathscr{H})$ is called **Cowen-Douglas** if there exists open subset $\Omega \subset \sigma(R)$ such that

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1
$$(R - \lambda)\mathcal{H} = \mathcal{H}$$
 for all $\lambda \in \Omega$

2 dim
$$(\ker(R - \lambda)) = n$$
 for all $\lambda \in \Omega$.

3
$$\bigvee_{\lambda \in \Omega} \ker(R - \lambda) = \mathscr{H}$$

We denote this by $R \in B_n(\Omega)$.

Cowen-Douglas Operators

└_Definition

Definition

An operator $R \in \mathscr{B}(\mathscr{H})$ is called **Cowen-Douglas** if there exists open subset $\Omega \subset \sigma(R)$ such that

1
$$(R - \lambda)\mathscr{H} = \mathscr{H}$$
 for all $\lambda \in \Omega$

2 dim
$$(\ker(R - \lambda)) = n$$
 for all $\lambda \in \Omega$.

3
$$\bigvee_{\lambda \in \Omega} \ker(R - \lambda) = \mathscr{H}$$

We denote this by $R \in B_n(\Omega)$.

Theorem (D-)

Let $T \in \mathscr{B}(\mathscr{H})$ be left invertible operator with ind(T) = -n, for $n \geq 1$. Then the following are equivalent:

Cowen-Douglas Operators

└_Definition

Definition

An operator $R \in \mathscr{B}(\mathscr{H})$ is called **Cowen-Douglas** if there exists open subset $\Omega \subset \sigma(R)$ such that

1
$$(R - \lambda)\mathscr{H} = \mathscr{H}$$
 for all $\lambda \in \Omega$

2 dim
$$(\ker(R - \lambda)) = n$$
 for all $\lambda \in \Omega$.

3
$$\bigvee_{\lambda \in \Omega} \ker(R - \lambda) = \mathscr{H}$$

We denote this by $R \in B_n(\Omega)$.

Theorem (D-)

Let $T \in \mathscr{B}(\mathscr{H})$ be left invertible operator with ind(T) = -n, for $n \geq 1$. Then the following are equivalent:

1 T is an analytic

Cowen-Douglas Operators

└_Definition

Definition

An operator $R \in \mathscr{B}(\mathscr{H})$ is called **Cowen-Douglas** if there exists open subset $\Omega \subset \sigma(R)$ such that

1
$$(R - \lambda)\mathscr{H} = \mathscr{H}$$
 for all $\lambda \in \Omega$

2 dim
$$(\ker(R - \lambda)) = n$$
 for all $\lambda \in \Omega$.

3
$$\bigvee_{\lambda \in \Omega} \ker(R - \lambda) = \mathscr{H}$$

We denote this by $R \in B_n(\Omega)$.

Theorem (D-)

Let $T \in \mathscr{B}(\mathscr{H})$ be left invertible operator with ind(T) = -n, for $n \geq 1$. Then the following are equivalent:

1 T is an analytic

2 There exists $\epsilon > 0$ such that $T^* \in B_n(\Omega)$ for $\Omega = \{z : |z| < \epsilon\}$

Cowen-Douglas Operators

└_Definition

Definition

An operator $R \in \mathscr{B}(\mathscr{H})$ is called **Cowen-Douglas** if there exists open subset $\Omega \subset \sigma(R)$ such that

1
$$(R - \lambda)\mathscr{H} = \mathscr{H}$$
 for all $\lambda \in \Omega$

2 dim
$$(\ker(R - \lambda)) = n$$
 for all $\lambda \in \Omega$.

3
$$\bigvee_{\lambda \in \Omega} \ker(R - \lambda) = \mathscr{H}$$

We denote this by $R \in B_n(\Omega)$.

Theorem (D-)

Let $T \in \mathscr{B}(\mathscr{H})$ be left invertible operator with ind(T) = -n, for $n \geq 1$. Then the following are equivalent:

- **1** T is an analytic
- **2** There exists $\epsilon > 0$ such that $T^* \in B_n(\Omega)$ for $\Omega = \{z : |z| < \epsilon\}$
- **3** There exists $\epsilon > 0$ such that $T^{\dagger} \in B_n(\Omega)$ for $\Omega = \{z : |z| < \epsilon\}$

Cowen-Douglas Operators

└─Canonical Model

Theorem (Zhu)

If $R \in B_n(\Omega)$, then R is unitarily equivalent to M_z^* on a RKHS of analytic functions $\widehat{\mathscr{H}}$ on $\Omega^* = \{\overline{z} : z \in \Omega\}.$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Cowen-Douglas Operators

└─Canonical Model

Theorem (Zhu)

If $R \in B_n(\Omega)$, then R is unitarily equivalent to M_z^* on a RKHS of analytic functions $\widehat{\mathscr{H}}$ on $\Omega^* = \{\overline{z} : z \in \Omega\}.$

Analytic Model

Let T be an analytic left invertible with $\operatorname{ind}(T) = -n$ for some positive integer $n, \{x_{i,j}\}$ the basis associated with T^{\dagger^*} , and $\Omega = \{z : |z| < \epsilon\}$ as in previous theorem.

Cowen-Douglas Operators

└─Canonical Model

Theorem (Zhu)

If $R \in B_n(\Omega)$, then R is unitarily equivalent to M_z^* on a RKHS of analytic functions $\widehat{\mathscr{H}}$ on $\Omega^* = \{\overline{z} : z \in \Omega\}$.

Analytic Model

Let T be an analytic left invertible with $\operatorname{ind}(T) = -n$ for some positive integer n, $\{x_{i,j}\}$ the basis associated with T^{\dagger^*} , and $\Omega = \{z : |z| < \epsilon\}$ as in previous theorem. Then there exists holomorphic functions $\{\phi_i\}_{i=1}^n$ on Ω such that

$$\gamma(\lambda) := \sum_{i=1}^{n} \phi_i(\lambda) \sum_{j \ge 0} \lambda^j x_{i,j}$$

exists in \mathscr{H} for each $\lambda \in \Omega$.

Cowen-Douglas Operators

└─Canonical Model

Theorem (Zhu)

If $R \in B_n(\Omega)$, then R is unitarily equivalent to M_z^* on a RKHS of analytic functions $\widehat{\mathscr{H}}$ on $\Omega^* = \{\overline{z} : z \in \Omega\}$.

Analytic Model

Let T be an analytic left invertible with $\operatorname{ind}(T) = -n$ for some positive integer n, $\{x_{i,j}\}$ the basis associated with T^{\dagger^*} , and $\Omega = \{z : |z| < \epsilon\}$ as in previous theorem. Then there exists holomorphic functions $\{\phi_i\}_{i=1}^n$ on Ω such that

$$\gamma(\lambda) := \sum_{i=1}^{n} \phi_i(\lambda) \sum_{j \ge 0} \lambda^j x_{i,j}$$

exists in \mathscr{H} for each $\lambda \in \Omega$. Moreover, for each $f \in \mathscr{H}$,

$$\hat{f}(\lambda) = \langle f, \gamma(\overline{\lambda}) \rangle = \sum_{i=1}^{n} \phi_i(\lambda) \sum_{j \ge 0} \lambda^j \langle f, x_{i,j} \rangle.$$

Fredholm Index -1

└─Compact Operators and Classification

Theorem (D-)

If T is an analytic left invertible with ind(T) = -1, then \mathfrak{A}_T contains the compact operators $\mathscr{K}(\mathscr{H})$. Moreover, $\mathscr{K}(\mathscr{H})$ is a minimal ideal of \mathfrak{A}_T .

◆□▶ ◆□▶ ◆□▶ ◆□▶ = ● のへ⊙

Fredholm Index -1

└─Compact Operators and Classification

Theorem (D-)

If T is an analytic left invertible with ind(T) = -1, then \mathfrak{A}_T contains the compact operators $\mathscr{K}(\mathscr{H})$. Moreover, $\mathscr{K}(\mathscr{H})$ is a minimal ideal of \mathfrak{A}_T .

Corollary

 $I - TT^{\dagger}, I - T^{\dagger}T \in \mathscr{K}(\mathscr{H}). \ \ Thus, \ \pi(T)^{-1} = \pi(T^{\dagger}).$

Fredholm Index -1

Compact Operators and Classification

Theorem (D-)

If T is an analytic left invertible with ind(T) = -1, then \mathfrak{A}_T contains the compact operators $\mathscr{K}(\mathscr{H})$. Moreover, $\mathscr{K}(\mathscr{H})$ is a minimal ideal of \mathfrak{A}_T .

Corollary

 $I - TT^{\dagger}, I - T^{\dagger}T \in \mathscr{K}(\mathscr{H})$. Thus, $\pi(T)^{-1} = \pi(T^{\dagger})$. Hence, we have the following:

$$0 \longrightarrow \mathscr{K}(\mathscr{H}) \xrightarrow{\iota} \mathfrak{A}_T \xrightarrow{\pi} \mathscr{B} \longrightarrow 0$$

where $\mathscr{B} = \overline{Alg} \{ \pi(T), \pi(T^{\dagger}) \}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Class of Examples - Subnormal Operators

∟_{Definitions}

Definition

An operator $S \in \mathscr{B}(\mathscr{H})$ is **subnormal** if it has a normal extension:

$$N = \begin{pmatrix} S & A \\ 0 & B \end{pmatrix} \in \mathscr{B}(\mathscr{K})$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Class of Examples - Subnormal Operators

└_Definitions

Definition

An operator $S \in \mathscr{B}(\mathscr{H})$ is **subnormal** if it has a normal extension:

$$N = \begin{pmatrix} S & A \\ 0 & B \end{pmatrix} \in \mathscr{B}(\mathscr{K})$$

The operator N is said to be a **minimal normal extension** if \mathscr{K} has no proper subspace reducing N and containing \mathscr{H} .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Class of Examples - Subnormal Operators

└_Definitions

Definition

An operator $S \in \mathscr{B}(\mathscr{H})$ is **subnormal** if it has a normal extension:

$$N = \begin{pmatrix} S & A \\ 0 & B \end{pmatrix} \in \mathscr{B}(\mathscr{K})$$

The operator N is said to be a **minimal normal extension** if \mathscr{K} has no proper subspace reducing N and containing \mathscr{H} .

Definition

Let μ be a scalar-valued spectral measure associated to N, and $f \in L^{\infty}(\sigma(N), \mu)$.

Class of Examples - Subnormal Operators

└_Definitions

Definition

An operator $S \in \mathscr{B}(\mathscr{H})$ is **subnormal** if it has a normal extension:

$$N = \begin{pmatrix} S & A \\ 0 & B \end{pmatrix} \in \mathscr{B}(\mathscr{K})$$

The operator N is said to be a **minimal normal extension** if \mathscr{K} has no proper subspace reducing N and containing \mathscr{H} .

Definition

Let μ be a scalar-valued spectral measure associated to N, and $f \in L^{\infty}(\sigma(N), \mu)$. Define $T_f \in \mathscr{B}(\mathscr{H})$ via

$$T_f := P(f(N)) \mid_{\mathscr{H}}$$

where P is the orthogonal projection of \mathscr{K} onto \mathscr{H} .

Class of Examples - Subnormal Operators

LAlgebra Generated By Subnormal Operators

Theorem (Keough, Olin and Thomson)

If S is an irreducible, subnormal, essentially normal operator, then:

$$C^*(S) = \{T_f + K : f \in C(\sigma(N)), K \in \mathscr{K}(\mathscr{H})\}$$

Moreover, if $\sigma(N) = \sigma_e(S)$, then each element has $A \in C^*(S)$ has a unique representation of the form $T_f + K$.

うして ふゆ アメリア トレー ひゃく

Class of Examples - Subnormal Operators

LAlgebra Generated By Subnormal Operators

Theorem (D-)

Let S be an analytic left invertible, ind(S) = -1, essentially normal, subnormal operator with N := mne(S) such that $\sigma(N) = \sigma_e(S)$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Class of Examples - Subnormal Operators

LAlgebra Generated By Subnormal Operators

Theorem (D-)

Let S be an analytic left invertible, ind(S) = -1, essentially normal, subnormal operator with N := mne(S) such that $\sigma(N) = \sigma_e(S)$. Set

$$\mathscr{B} = \overline{Alg}\{z, z^{-1}\}$$

うして ふゆ アメリア トレー ひゃく

on $\sigma_e(S)$. Then

Class of Examples - Subnormal Operators

LAlgebra Generated By Subnormal Operators

Theorem (D-)

Let S be an analytic left invertible, ind(S) = -1, essentially normal, subnormal operator with N := mne(S) such that $\sigma(N) = \sigma_e(S)$. Set $\mathscr{B} = \overline{Alg}\{z, z^{-1}\}$

on $\sigma_e(S)$. Then

$$\mathfrak{A}_S = \{T_f + K : f \in \mathscr{B}, K \in \mathscr{K}(\mathscr{H})\}$$

うして ふゆ アメリア トレー ひゃく

Moreover, the representation of each element as $T_f + K$ is unique.

Classification for Index -1

└─ Consequences

Theorem (D-)

Let T_i , i = 1, 2 be left analytic left invertible with $ind(T_i) = -1$, and $\mathfrak{A}_i := \mathfrak{A}_{T_i}$. Suppose that $\phi : \mathfrak{A}_1 \to \mathfrak{A}_2$ is a bounded isomorphism.

◆□▶ ◆□▶ ◆□▶ ◆□▶ = ● のへ⊙

Classification for Index -1

└─ Consequences

Theorem (D-)

Let T_i , i = 1, 2 be left analytic left invertible with $ind(T_i) = -1$, and $\mathfrak{A}_i := \mathfrak{A}_{T_i}$. Suppose that $\phi : \mathfrak{A}_1 \to \mathfrak{A}_2$ is a bounded isomorphism. Then $\phi = Ad_V$ for some invertible $V \in \mathscr{B}(\mathscr{H})$. That is, for all $A \in \mathfrak{A}_1$,

$$\phi(A) = VAV^{-1}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ = ● のへ⊙

Classification for Index -1

└─ Consequences

Theorem (D-)

Let T_i , i = 1, 2 be left analytic left invertible with $ind(T_i) = -1$, and $\mathfrak{A}_i := \mathfrak{A}_{T_i}$. Suppose that $\phi : \mathfrak{A}_1 \to \mathfrak{A}_2$ is a bounded isomorphism. Then $\phi = Ad_V$ for some invertible $V \in \mathscr{B}(\mathscr{H})$. That is, for all $A \in \mathfrak{A}_1$,

$$\phi(A) = VAV^{-1}$$

Remark

To distinguish these algebras by isomorphism classes, we need to classify the similarity orbit:

$$\mathcal{S}(T) := \{ VTV^{-1} : V \in \mathscr{B}(\mathscr{H}) \text{ is invertible} \}$$

-The Similarity Orbit

 $L_{\text{Classification For Index } -1 }$

Remark

• To determine $\mathcal{S}(T)$, suffices to identify $\mathcal{S}(T^*)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

<u>The</u> Similarity Orbit

 \square Classification For Index -1

Remark

- To determine $\mathcal{S}(T)$, suffices to identify $\mathcal{S}(T^*)$.
- Recall that $T^* \in B_1(\Omega)$ for some disc Ω centered at the origin.

イロト (日下 (日下 (日下)))

L The Similarity Orbit

 \square Classification For Index -1

Remark

- To determine $\mathcal{S}(T)$, suffices to identify $\mathcal{S}(T^*)$.
- Recall that $T^* \in B_1(\Omega)$ for some disc Ω centered at the origin.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Determining the similarity orbit of Cowen-Douglas operators is a classic problem.

└─ The Similarity Orbit

 \square Classification For Index -1

Remark

- To determine $\mathcal{S}(T)$, suffices to identify $\mathcal{S}(T^*)$.
- Recall that $T^* \in B_1(\Omega)$ for some disc Ω centered at the origin.
- Determining the similarity orbit of Cowen-Douglas operators is a classic problem.

Theorem (Jiang, Wang, Guo, Ji)

Let $A, B \in B_1(\Omega)$. Then A is similar to B if and only if

 $K_0(\{A \oplus B\}') \cong \mathbb{Z}$

• What if we replaced dynamics of ONB with frames?

- What if we replaced dynamics of ONB with frames?
- Construct operator algebra using closed ranged operators and Moore-Penrose inverse

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

- What if we replaced dynamics of ONB with frames?
- Construct operator algebra using closed ranged operators and Moore-Penrose inverse

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

• Look at $\mathfrak{A}_T := \overline{\operatorname{Alg}}(T, T^{\dagger})$

- What if we replaced dynamics of ONB with frames?
- Construct operator algebra using closed ranged operators and Moore-Penrose inverse

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Look at $\mathfrak{A}_T := \overline{\operatorname{Alg}}(T, T^{\dagger})$
- \blacksquare No Wold \Rightarrow analytic: $\bigcap_n T^n \mathscr{H} = 0$

- What if we replaced dynamics of ONB with frames?
- Construct operator algebra using closed ranged operators and Moore-Penrose inverse
- Look at $\mathfrak{A}_T := \overline{\operatorname{Alg}}(T, T^{\dagger})$
- No Wold \Rightarrow analytic: $\bigcap_n T^n \mathscr{H} = 0$
- \blacksquare Analytic \Rightarrow Cowen-Douglas
 - 1 Canonical Model
 - **2** Classification program \Rightarrow Similarity orbit/K-theoretic obstruction

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Determine the isomorphism classes for ind(T) < -1.

• Determine the isomorphism classes for ind(T) < -1.

• Is $\operatorname{Rad}(\mathfrak{A}_T/\mathscr{K}(\mathscr{H})) = 0$?

• Determine the isomorphism classes for ind(T) < -1.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

- Is $\operatorname{Rad}(\mathfrak{A}_T/\mathscr{K}(\mathscr{H})) = 0$?
- Any hope for non-analytic left invertibles?

- Determine the isomorphism classes for ind(T) < -1.
- Is $\operatorname{Rad}(\mathfrak{A}_T/\mathscr{K}(\mathscr{H})) = 0$?
- Any hope for non-analytic left invertibles?
- Investigate other algebras that arise from graphs e.g. "Cuntz algebra".

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>