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Operator Algebras Generated by Left Invertibles
Program Outline

Motivation - Frames

Background

A sequence {fn} in a Hilbert space H is called a frame if
there exists constants 0 < A < B such that for each x ∈H ,

A‖x‖2 ≤
∑

n

|〈x, fn〉|2 ≤ B‖x‖2

We can associate to each frame {fn} a dual frame {gn}
such that

x =
∑

n

〈x, gn〉fn
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C*-algebras generated by partial isometries (graph algebras) are
well studied.
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Closed Range Operators

Remark
If {fk} frame for H , and T has closed range, then {Tfk} is a
frame for TH .

Definition
Let T ∈ B(H ) have closed range. There is a unique operator
T † ∈ B(H ) called the Moore-Penrose inverse of T such
that

1 T †Tx = x for all x ∈ ker(T )⊥

2 T †y = 0 for all y ∈ (TH )⊥.
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Example

If T is an isometry, then T † = T ∗.

Let T ∈ B(`2) be given by Ten = wnen, n ≥ 0. If
0 < c < |wn|, then T is left invertible and

T †en =
{

0 n = 0
w−1

n en−1 n ≥ 1
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Program Outline

Research Program

Program
For each edge e in Γ, pick operators {Te}e∈E1 with closed range
subject to constraints of graph. Analyze the structure of the
operator algebra

AΓ := Alg({Te, T
†
e }e∈E1).

Remark
Our focus is on representations afforded by the graph
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Operator Algebras Generated by Left Invertibles
The Algebra AT

Definition

Focus
Let T be a left invertible operator, and T † its Moore-Penrose
inverse. Set

AT := Alg(T, T †).

Question

1 In what way does AT look like the C*-algebra generated by
an isometry?

2 What are the isomorphism classes of AT ?
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Wold Decomposition

Example
If T = Mz on H2(T), then AT is the classic Toeplitz algebra

T = {Tf +K : f ∈ C(T),K ∈ K (H2(T))}

Remark
General left invertibles have no Wold decomposition:

H 6=
(⋂

n

TnH

)
⊕
(∨

n

Tn ker(T ∗)
)
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The Algebra AT

Wold Decomposition

Definition
A left invertible operator T is called analytic if⋂

n

TnH = 0

Theorem (D-)

Let T be an analytic left invertible with ind(T ) = −n for some
positive integer n. Let {xi,0}ni=1 be an orthonormal basis for
ker(T ∗). Then

xi,j := (T †∗)j(xi,0)

i = 1, . . . n, j = 0, 1, . . . is a Schauder basis for H
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Operator Algebras Generated by Left Invertibles
Cowen-Douglas Operators

Definition

Definition
An operator R ∈ B(H ) is called Cowen-Douglas if there exists
open subset Ω ⊂ σ(R) such that

1 (R− λ)H = H for all λ ∈ Ω

2 dim(ker(R− λ)) = n for all λ ∈ Ω.

3
∨
λ∈Ω ker(R− λ) = H

We denote this by R ∈ Bn(Ω).

Theorem (D-)

Let T ∈ B(H ) be left invertible operator with ind(T ) = −n, for
n ≥ 1. Then the following are equivalent:

1 T is an analytic

2 There exists ε > 0 such that T ∗ ∈ Bn(Ω) for Ω = {z : |z| < ε}

3 There exists ε > 0 such that T † ∈ Bn(Ω) for Ω = {z : |z| < ε}



Operator Algebras Generated by Left Invertibles
Cowen-Douglas Operators

Definition

Definition
An operator R ∈ B(H ) is called Cowen-Douglas if there exists
open subset Ω ⊂ σ(R) such that

1 (R− λ)H = H for all λ ∈ Ω

2 dim(ker(R− λ)) = n for all λ ∈ Ω.

3
∨
λ∈Ω ker(R− λ) = H

We denote this by R ∈ Bn(Ω).

Theorem (D-)

Let T ∈ B(H ) be left invertible operator with ind(T ) = −n, for
n ≥ 1. Then the following are equivalent:

1 T is an analytic

2 There exists ε > 0 such that T ∗ ∈ Bn(Ω) for Ω = {z : |z| < ε}

3 There exists ε > 0 such that T † ∈ Bn(Ω) for Ω = {z : |z| < ε}



Operator Algebras Generated by Left Invertibles
Cowen-Douglas Operators

Definition

Definition
An operator R ∈ B(H ) is called Cowen-Douglas if there exists
open subset Ω ⊂ σ(R) such that

1 (R− λ)H = H for all λ ∈ Ω

2 dim(ker(R− λ)) = n for all λ ∈ Ω.

3
∨
λ∈Ω ker(R− λ) = H

We denote this by R ∈ Bn(Ω).

Theorem (D-)

Let T ∈ B(H ) be left invertible operator with ind(T ) = −n, for
n ≥ 1. Then the following are equivalent:

1 T is an analytic

2 There exists ε > 0 such that T ∗ ∈ Bn(Ω) for Ω = {z : |z| < ε}

3 There exists ε > 0 such that T † ∈ Bn(Ω) for Ω = {z : |z| < ε}



Operator Algebras Generated by Left Invertibles
Cowen-Douglas Operators

Definition

Definition
An operator R ∈ B(H ) is called Cowen-Douglas if there exists
open subset Ω ⊂ σ(R) such that

1 (R− λ)H = H for all λ ∈ Ω

2 dim(ker(R− λ)) = n for all λ ∈ Ω.

3
∨
λ∈Ω ker(R− λ) = H

We denote this by R ∈ Bn(Ω).

Theorem (D-)

Let T ∈ B(H ) be left invertible operator with ind(T ) = −n, for
n ≥ 1. Then the following are equivalent:

1 T is an analytic

2 There exists ε > 0 such that T ∗ ∈ Bn(Ω) for Ω = {z : |z| < ε}

3 There exists ε > 0 such that T † ∈ Bn(Ω) for Ω = {z : |z| < ε}



Operator Algebras Generated by Left Invertibles
Cowen-Douglas Operators

Definition

Definition
An operator R ∈ B(H ) is called Cowen-Douglas if there exists
open subset Ω ⊂ σ(R) such that

1 (R− λ)H = H for all λ ∈ Ω

2 dim(ker(R− λ)) = n for all λ ∈ Ω.

3
∨
λ∈Ω ker(R− λ) = H

We denote this by R ∈ Bn(Ω).

Theorem (D-)

Let T ∈ B(H ) be left invertible operator with ind(T ) = −n, for
n ≥ 1. Then the following are equivalent:

1 T is an analytic

2 There exists ε > 0 such that T ∗ ∈ Bn(Ω) for Ω = {z : |z| < ε}

3 There exists ε > 0 such that T † ∈ Bn(Ω) for Ω = {z : |z| < ε}



Operator Algebras Generated by Left Invertibles
Cowen-Douglas Operators

Canonical Model

Theorem (Zhu)

If R ∈ Bn(Ω), then R is unitarily equivalent to M∗z on a RKHS of
analytic functions Ĥ on Ω∗ = {z : z ∈ Ω}.

Analytic Model
Let T be an analytic left invertible with ind(T ) = −n for some
positive integer n, {xi,j} the basis associated with T †

∗, and
Ω = {z : |z| < ε} as in previous theorem. Then there exists
holomorphic functions {φi}ni=1 on Ω such that

γ(λ) :=
n∑
i=1

φi(λ)
∑
j≥0

λjxi,j

exists in H for each λ ∈ Ω. Moreover, for each f ∈H ,

f̂(λ) = 〈f, γ(λ)〉 =
n∑
i=1

φi(λ)
∑
j≥0

λj〈f, xi,j〉.
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Fredholm Index -1

Compact Operators and Classification

Theorem (D-)

If T is an analytic left invertible with ind(T ) = −1, then AT

contains the compact operators K (H ). Moreover, K (H ) is a
minimal ideal of AT .

Corollary
I − TT †, I − T †T ∈ K (H ). Thus, π(T )−1 = π(T †). Hence, we
have the following:

0 K (H ) AT B 0ι π

where B = Alg{π(T ), π(T †)}.
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Operator Algebras Generated by Left Invertibles
Class of Examples - Subnormal Operators

Definitions

Definition
An operator S ∈ B(H ) is subnormal if it has a normal
extension:

N =
(
S A
0 B

)
∈ B(K )

The operator N is said to be a minimal normal extension if
K has no proper subspace reducing N and containing H .

Definition
Let µ be a scalar-valued spectral measure associated to N , and
f ∈ L∞(σ(N), µ). Define Tf ∈ B(H ) via

Tf := P (f(N)) |H

where P is the orthogonal projection of K onto H .
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Class of Examples - Subnormal Operators

Algebra Generated By Subnormal Operators

Theorem (Keough, Olin and Thomson )

If S is an irreducible, subnormal, essentially normal operator,
then:

C∗(S) = {Tf +K : f ∈ C(σ(N)),K ∈ K (H )}

Moreover, if σ(N) = σe(S), then each element has A ∈ C∗(S)
has a unique representation of the form Tf +K.
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Algebra Generated By Subnormal Operators

Theorem (D-)

Let S be an analytic left invertible, ind(S) = −1, essentially
normal, subnormal operator with N := mne(S) such that
σ(N) = σe(S).

Set
B = Alg{z, z−1}

on σe(S). Then

AS = {Tf +K : f ∈ B,K ∈ K (H )}

Moreover, the representation of each element as Tf +K is
unique.
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Operator Algebras Generated by Left Invertibles
Classification for Index -1

Consequences

Theorem (D-)

Let Ti, i = 1, 2 be left analytic left invertible with ind(Ti) = −1,
and Ai := ATi. Suppose that φ : A1 → A2 is a bounded
isomorphism.

Then φ = AdV for some invertible V ∈ B(H ).
That is, for all A ∈ A1,

φ(A) = V AV −1

Remark
To distinguish these algebras by isomorphism classes, we need
to classify the similarity orbit:

S(T ) := {V TV −1 : V ∈ B(H ) is invertible}
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Operator Algebras Generated by Left Invertibles
The Similarity Orbit

Classification For Index −1

Remark

To determine S(T ), suffices to identify S(T ∗).

Recall that T ∗ ∈ B1(Ω) for some disc Ω centered at the
origin.
Determining the similarity orbit of Cowen-Douglas
operators is a classic problem.

Theorem (Jiang, Wang, Guo, Ji)

Let A,B ∈ B1(Ω). Then A is similar to B if and only if

K0({A⊕B}′) ∼= Z
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Operator Algebras Generated by Left Invertibles
Summary

What if we replaced dynamics of ONB with frames?

Construct operator algebra using closed ranged operators
and Moore-Penrose inverse
Look at AT := Alg(T, T †)
No Wold ⇒ analytic:

⋂
n T

nH = 0
Analytic ⇒ Cowen-Douglas

1 Canonical Model
2 Classification program ⇒ Similarity orbit/K-theoretic

obstruction
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Operator Algebras Generated by Left Invertibles
Future Work

Future Work:
Determine the isomorphism classes for ind(T ) < −1.

Is Rad(AT /K (H )) = 0?
Any hope for non-analytic left invertibles?
Investigate other algebras that arise from graphs - e.g.
“Cuntz algebra”.
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