Derek Desantis

University of Nebraska, Lincoln

March 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- **1** Background and General Program
 - Basic Elements of Functional Analysis
 - General Program
- 2 Isometries and The Toeplitz Algebra
 - Decomposition of Isometries
 - A Better Representation
- 3 Left Invertible Operators and Cowen-Douglas Operators

- Analytic Left Invertible
- Cowen-Douglas Operators
- 4 Examples and Classification
 - \blacksquare Compact Operators and the Structure of \mathfrak{A}_T
 - \blacksquare Examples from Subnormal Operators
 - Classification for dim $\ker(T^*) = 1$
- 5 Future Work

Operator Algebras Generated by Left Invertibles Background and General Program

- Background and General Program
 Basic Elements of Functional Analysis
 General Program
- 2 Isometries and The Toeplitz Algebra
 Decomposition of Isometries
 A Better Representation
- 3 Left Invertible Operators and Cowen-Douglas Operators
 Analytic Left Invertible
 Cowen-Douglas Operators

- 4 Examples and Classification
 - Compact Operators and the Structure of \mathfrak{A}_T
 - Examples from Subnormal Operators
 - Classification for dim $\ker(T^*) = 1$
- 5 Future Work

- Background and General Program
 - └─Basic Elements of Functional Analysis

Definition

- A Hilbert space \mathscr{H} is
 - **1** inner product space: $\langle \cdot, \cdot \rangle : \mathscr{H} \times \mathscr{H} \to \mathbb{C}$
 - **2** complete with respect to the norm $||x||^2 = \langle x, x \rangle$.

- Background and General Program
 - Basic Elements of Functional Analysis

Definition

- A Hilbert space \mathscr{H} is
 - **1** inner product space: $\langle \cdot, \cdot \rangle : \mathscr{H} \times \mathscr{H} \to \mathbb{C}$
 - **2** complete with respect to the norm $||x||^2 = \langle x, x \rangle$.

A linear map $T: \mathscr{H} \to \mathscr{H}$ is **bounded** if

$$||T|| := \sup_{||x|| \le 1} ||Tx|| < \infty.$$

- Background and General Program
 - Basic Elements of Functional Analysis

Definition

- A Hilbert space \mathscr{H} is
 - **1** inner product space: $\langle \cdot, \cdot \rangle : \mathscr{H} \times \mathscr{H} \to \mathbb{C}$
 - **2** complete with respect to the norm $||x||^2 = \langle x, x \rangle$.

A linear map $T: \mathscr{H} \to \mathscr{H}$ is **bounded** if

$$||T|| := \sup_{||x|| \le 1} ||Tx|| < \infty.$$

We set

 $\mathscr{B}(\mathscr{H}):=\{T:\mathscr{H}\to\mathscr{H}: \ \mathrm{T} \ \mathrm{is} \ \mathrm{bounded}, \ \mathrm{linear}\}.$

- Background and General Program
 - Basic Elements of Functional Analysis

Definition

- A Hilbert space \mathscr{H} is
 - **1** inner product space: $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$
 - **2** complete with respect to the norm $||x||^2 = \langle x, x \rangle$.

A linear map $T: \mathscr{H} \to \mathscr{H}$ is **bounded** if

$$||T|| := \sup_{||x|| \le 1} ||Tx|| < \infty.$$

We set

 $\mathscr{B}(\mathscr{H}) := \{T : \mathscr{H} \to \mathscr{H} : T \text{ is bounded, linear}\}.$

For $T \in \mathscr{B}(\mathscr{H})$, the **adjoint** $T^* \in \mathscr{B}(\mathscr{H})$ such that

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$

for each $x, y \in \mathcal{H}$.

Background and General Program

└─Basic Elements of Functional Analysis

Example

$$\mathscr{H} = \mathbb{C}^n, \, \mathscr{B}(\mathbb{C}^n) = M_n, \, (a_{i,j})^* = (\overline{a_{j,i}}).$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○</p>

Background and General Program

└─Basic Elements of Functional Analysis

Example

$$\mathscr{H} = \mathbb{C}^n, \, \mathscr{B}(\mathbb{C}^n) = M_n, \, (a_{i,j})^* = (\overline{a_{j,i}}).$$

Definition

If $F \in \mathscr{B}(\mathscr{H})$ satisfies dim $(\operatorname{ran}(F)) < \infty$, F is finite rank.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Background and General Program

└─Basic Elements of Functional Analysis

Example

$$\mathscr{H} = \mathbb{C}^n, \, \mathscr{B}(\mathbb{C}^n) = M_n, \, (a_{i,j})^* = (\overline{a_{j,i}}).$$

Definition

If $F \in \mathscr{B}(\mathscr{H})$ satisfies dim $(\operatorname{ran}(F)) < \infty$, F is *finite rank*. An operator $K \in \mathscr{B}(\mathscr{H})$ is called **compact** if K is the norm-limit of finite rank operators. We write

 $\mathscr{K}(\mathscr{H}) := \{ \text{all compact operators on } \mathscr{H} \}.$

Background and General Program

└─Basic Elements of Functional Analysis

Definition

Let

$$\mathscr{H} = \ell^2(\mathbb{N}) = \{(a_1, a_2, \dots) : \sum |a_n|^2 < \infty\}.$$

The unilateral shift $S \in \mathscr{B}(\mathscr{H})$ is

$$S(a_1, a_2, a_3, \dots) = (0, a_1, a_2, \dots).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Background and General Program

└─Basic Elements of Functional Analysis

Definition

Let

$$\mathscr{H} = \ell^2(\mathbb{N}) = \{(a_1, a_2, \dots) : \sum |a_n|^2 < \infty\}.$$

The unilateral shift $S \in \mathscr{B}(\mathscr{H})$ is

$$S(a_1, a_2, a_3, \dots) = (0, a_1, a_2, \dots).$$

Then

$$S^*(a_1, a_2, a_3, \dots) = (a_2, a_3, a_4, \dots).$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Background and General Program

└─Basic Elements of Functional Analysis

Definition

Let

$$\mathscr{H} = \ell^2(\mathbb{N}) = \{(a_1, a_2, \dots) : \sum |a_n|^2 < \infty\}.$$

The unilateral shift $S \in \mathscr{B}(\mathscr{H})$ is

$$S(a_1, a_2, a_3, \dots) = (0, a_1, a_2, \dots).$$

Then

$$S^*(a_1, a_2, a_3, \dots) = (a_2, a_3, a_4, \dots).$$

Also,

$$\ker(S) = 0, \, \ker(S^*) = \operatorname{span}\{e_1\}$$

$$\bullet S^*S = I$$

• S is isometric: ||Sx|| = ||x|| for all $x \in \mathcal{H}$.

- Background and General Program
 - └─Basic Elements of Functional Analysis

Definition

$U \in \mathscr{B}(\mathscr{H})$ is **unitary** if $U^*U = I = UU^*$.

- Background and General Program
 - └─Basic Elements of Functional Analysis

Definition

 $U \in \mathscr{B}(\mathscr{H})$ is **unitary** if $U^*U = I = UU^*$.

Remark

Unitaries correspond to change of orthonormal bases on $\mathcal H.$

- Background and General Program
 - └─Basic Elements of Functional Analysis

Definition

 $U \in \mathscr{B}(\mathscr{H})$ is **unitary** if $U^*U = I = UU^*$.

Remark

Unitaries correspond to change of orthonormal bases on $\mathcal H.$

Definition

 $V\in \mathscr{B}(\mathscr{H})$ is a partial isometry if $V\mid_{\ker(V)^{\perp}}$ is isometric

- Background and General Program
 - Basic Elements of Functional Analysis

Definition

 $U \in \mathscr{B}(\mathscr{H})$ is **unitary** if $U^*U = I = UU^*$.

Remark

Unitaries correspond to change of orthonormal bases on $\mathcal H.$

Definition

 $V\in \mathscr{B}(\mathscr{H})$ is a partial isometry if $V\mid_{\ker(V)^{\perp}}$ is isometric

うして ふゆ アメリア トレー ひゃく

Remark

 $\blacksquare~V$ preserves orthonormal sets

- Background and General Program
 - Basic Elements of Functional Analysis

Definition

 $U \in \mathscr{B}(\mathscr{H})$ is **unitary** if $U^*U = I = UU^*$.

Remark

Unitaries correspond to change of orthonormal bases on $\mathcal H.$

Definition

 $V\in \mathscr{B}(\mathscr{H})$ is a partial isometry if $V\mid_{\ker(V)^{\perp}}$ is isometric

Remark

- $\blacksquare~V$ preserves orthonormal sets
- \blacksquare V models step from one O.N. set to another

- Background and General Program
 - Basic Elements of Functional Analysis

Definition

 $U \in \mathscr{B}(\mathscr{H})$ is **unitary** if $U^*U = I = UU^*$.

Remark

Unitaries correspond to change of orthonormal bases on $\mathcal H.$

Definition

 $V\in \mathscr{B}(\mathscr{H})$ is a partial isometry if $V\mid_{\ker(V)^{\perp}}$ is isometric

Remark

- $\blacksquare~V$ preserves orthonormal sets
- V models step from one O.N. set to another
- V^* models step back

Background and General Program

└─Basic Elements of Functional Analysis

Let $\{V_{\alpha}\}_{\alpha \in A}$ be partial isometries on \mathscr{H} .

Background and General Program

└─Basic Elements of Functional Analysis

- Let $\{V_{\alpha}\}_{\alpha \in A}$ be partial isometries on \mathscr{H} .
 - Each V_{α}, V_{α}^* encode single step dynamics.

Background and General Program

└─Basic Elements of Functional Analysis

- Let $\{V_{\alpha}\}_{\alpha \in A}$ be partial isometries on \mathscr{H} .
 - Each V_{α}, V_{α}^* encode single step dynamics.
 - Hence $Alg\{V_{\alpha}, V_{\alpha}^*\}$ codifies all finite walks.

Background and General Program

└─Basic Elements of Functional Analysis

- Let $\{V_{\alpha}\}_{\alpha \in A}$ be partial isometries on \mathscr{H} .
 - Each V_{α}, V_{α}^* encode single step dynamics.
 - Hence $Alg\{V_{\alpha}, V_{\alpha}^*\}$ codifies all finite walks.
 - \blacksquare Close algebra with respect to $\|\cdot\|$ to get infinite walks.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Background and General Program

Basic Elements of Functional Analysis

- Let $\{V_{\alpha}\}_{\alpha \in A}$ be partial isometries on \mathscr{H} .
 - Each V_{α}, V_{α}^* encode single step dynamics.
 - Hence $Alg\{V_{\alpha}, V_{\alpha}^*\}$ codifies all finite walks.
 - \blacksquare Close algebra with respect to $\|\cdot\|$ to get infinite walks.

Definition

A C*-algebra is a norm-closed sub-algebra of $\mathscr{B}(\mathscr{H})$ that is also closed under adjoints.

うして ふゆ アメリア トレー ひゃく

Background and General Program

└─Basic Elements of Functional Analysis

- Let $\{V_{\alpha}\}_{\alpha \in A}$ be partial isometries on \mathscr{H} .
 - Each V_{α}, V_{α}^* encode single step dynamics.
 - Hence $Alg\{V_{\alpha}, V_{\alpha}^*\}$ codifies all finite walks.
 - \blacksquare Close algebra with respect to $\|\cdot\|$ to get infinite walks.

Definition

A C*-algebra is a norm-closed sub-algebra of $\mathscr{B}(\mathscr{H})$ that is also closed under adjoints.

Remark

C*-algebra's that encode dynamics of groups, groupoids, graphs, etc. are well studied.

うして ふゆ アメリア トレー ひゃく

Background and General Program

└─General Program

Definition

A sequence $\{f_n\}$ in a Hilbert space \mathscr{H} is called a **frame** if there exists constants 0 < A < B such that for each $x \in \mathscr{H}$,

$$A||x||^2 \le \sum_n |\langle x, f_n \rangle|^2 \le B||x||^2$$

イロト (日下 (日下 (日下)))

Background and General Program

└─General Program

Definition

A sequence $\{f_n\}$ in a Hilbert space \mathscr{H} is called a **frame** if there exists constants 0 < A < B such that for each $x \in \mathscr{H}$,

$$A||x||^2 \le \sum_n |\langle x, f_n \rangle|^2 \le B||x||^2$$

We can associate to each frame $\{f_n\}$ a (canonical) dual frame $\{g_n\}$ such that

$$x = \sum_{n} \langle x, g_n \rangle f_n$$

うして ふゆ アメリア トレー ひゃく

Background and General Program

└─_{General} Program

Recall

Unitaries preserve orthonormal bases

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Background and General Program

└─General Program

Recall

- Unitaries preserve orthonormal bases
- Partial isometries preserve orthonormal sets

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Background and General Program

└─General Program

Recall

- Unitaries preserve orthonormal bases
- Partial isometries preserve orthonormal sets
- The adjoint of a partial isometry "walks backwards"

Background and General Program

└─General Program

Recall

- Unitaries preserve orthonormal bases
- Partial isometries preserve orthonormal sets
- The adjoint of a partial isometry "walks backwards"

Remark

■ Invertible operators preserve property of being a frame

Background and General Program

└─General Program

Recall

- Unitaries preserve orthonormal bases
- Partial isometries preserve orthonormal sets
- The adjoint of a partial isometry "walks backwards"

Remark

- Invertible operators preserve property of being a frame
- Closed range operators $(\operatorname{ran}(T) = \overline{\operatorname{ran}(T)})$ preserve frames for closed subspaces

Background and General Program

└─General Program

Recall

- Unitaries preserve orthonormal bases
- Partial isometries preserve orthonormal sets
- The adjoint of a partial isometry "walks backwards"

Remark

- Invertible operators preserve property of being a frame
- Closed range operators $(\operatorname{ran}(T) = \overline{\operatorname{ran}(T)})$ preserve frames for closed subspaces

Question

What is the analog of the adjoint for a closed range operator?

Background and General Program

└─General Program

Definition

Let $T \in \mathscr{B}(\mathscr{H})$ have closed range. There is a unique operator $T^{\dagger} \in \mathscr{B}(\mathscr{H})$ called the **Moore-Penrose inverse of T** such that

1
$$T^{\dagger}Tx = x$$
 for all $x \in \ker(T)^{\perp}$

2
$$T^{\dagger}y = 0$$
 for all $y \in (T\mathscr{H})^{\perp}$.

Background and General Program

└─General Program

Definition

Let $T \in \mathscr{B}(\mathscr{H})$ have closed range. There is a unique operator $T^{\dagger} \in \mathscr{B}(\mathscr{H})$ called the **Moore-Penrose inverse of T** such that

- $T^{\dagger}Tx = x \text{ for all } x \in \ker(T)^{\perp}$
- **2** $T^{\dagger}y = 0$ for all $y \in (T\mathscr{H})^{\perp}$.

Example

• If T is an isometry, then $T^{\dagger} = T^*$.

Background and General Program

└─General Program

Definition

Let $T \in \mathscr{B}(\mathscr{H})$ have closed range. There is a unique operator $T^{\dagger} \in \mathscr{B}(\mathscr{H})$ called the **Moore-Penrose inverse of T** such that

- **1** $T^{\dagger}Tx = x$ for all $x \in \ker(T)^{\perp}$
- 2 $T^{\dagger}y = 0$ for all $y \in (T\mathscr{H})^{\perp}$.

Example

- If T is an isometry, then $T^{\dagger} = T^*$.
- Let $T \in \mathscr{B}(\ell^2)$ be given by $Te_n = w_n e_{n+1}, n \ge 1$. If $0 < c < |w_n|$, then T has closed range (left invertible) and

$$T^{\dagger}e_{n} = \begin{cases} 0 & n = 1\\ w_{n}^{-1}e_{n-1} & n \ge 2 \end{cases}$$

Background and General Program

└─General Program

Program

For each edge e in Γ , pick operators $\{T_e\}_{e \in E^1}$ with closed range subject to constraints of graph. Analyze the structure of the operator algebra

$$\mathfrak{A}_{\Gamma} := \overline{\operatorname{Alg}}(\{T_e, T_e^{\dagger}\}_{e \in E^1}).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ = ● のへ⊙

Background and General Program

└─General Program

Program

For each edge e in Γ , pick operators $\{T_e\}_{e \in E^1}$ with closed range subject to constraints of graph. Analyze the structure of the operator algebra

$$\mathfrak{A}_{\Gamma} := \overline{\operatorname{Alg}}(\{T_e, T_e^{\dagger}\}_{e \in E^1}).$$

Remark

Our focus is on representations afforded by the graph

Background and General Program

└─General Program

Focus

Let T be a left invertible operator, and T^{\dagger} its Moore-Penrose inverse. Set

$$\mathfrak{A}_T := \overline{\mathrm{Alg}}(T, T^{\dagger}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Background and General Program

└─General Program

Focus

Let T be a left invertible operator, and T^{\dagger} its Moore-Penrose inverse. Set

$$\mathfrak{A}_T := \overline{\mathrm{Alg}}(T, T^{\dagger}).$$

Question

In what way does \mathfrak{A}_T look like the C*-algebra generated by an isometry?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Background and General Program

└─General Program

Focus

Let T be a left invertible operator, and T^{\dagger} its Moore-Penrose inverse. Set

$$\mathfrak{A}_T := \overline{\mathrm{Alg}}(T, T^{\dagger}).$$

Question

In what way does \mathfrak{A}_T look like the C*-algebra generated by an isometry?

うして ふゆ アメリア トレー ひゃく

2 What are the isomorphism classes of \mathfrak{A}_T ?

Operator Algebras Generated by Left Invertibles Lisometries and The Toeplitz Algebra

- Background and General Program
 Basic Elements of Functional Analysis
 General Program
- 2 Isometries and The Toeplitz Algebra
 Decomposition of Isometries
 A Better Representation
- 3 Left Invertible Operators and Cowen-Douglas Operators
 Analytic Left Invertible
 Cowen-Douglas Operators

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 4 Examples and Classification
 - Compact Operators and the Structure of \mathfrak{A}_T
 - Examples from Subnormal Operators
 - Classification for dim $\ker(T^*) = 1$
- 5 Future Work

└─Isometries and The Toeplitz Algebra

└─Decomposition of Isometries

Proposition (Wold-Decomposition)

If $V \in \mathscr{B}(\mathscr{H})$ is an isometry, then

$$V = U \oplus (\oplus_{\alpha \in A} S)$$

where U is a unitary and S is the shift operator. Namely,

$$\mathscr{H} = \left(\bigcap_{n \ge 0} V^n \mathscr{H}\right) \oplus \left(\bigvee_{n \ge 0} V^n \ker(V^*)\right)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

and $|A| = \dim(\ker(V^*))$.

└─Isometries and The Toeplitz Algebra

Decomposition of Isometries

Proposition (Wold-Decomposition)

If $V \in \mathscr{B}(\mathscr{H})$ is an isometry, then

$$V = U \oplus (\oplus_{\alpha \in A} S)$$

where U is a unitary and S is the shift operator. Namely,

$$\mathscr{H} = \left(\bigcap_{n \ge 0} V^n \mathscr{H}\right) \oplus \left(\bigvee_{n \ge 0} V^n \ker(V^*)\right)$$

and $|A| = \dim(\ker(V^*))$.

Idea

If one wants to analyze $C^*(V)$ for some isometry V, one needs to understand $C^*(S)$.

Isometries and The Toeplitz Algebra

The functions $e_n(z) := z^n$ for $n \in \mathbb{Z}$ form an orthonormal basis for $L^2(\mathbb{T})$ with normalized Lebesgue measure.

└─Isometries and The Toeplitz Algebra

└─A Better Representation

The functions $e_n(z) := z^n$ for $n \in \mathbb{Z}$ form an orthonormal basis for $L^2(\mathbb{T})$ with normalized Lebesgue measure.

Definition

The **Hardy Space** $H^2(\mathbb{T})$ is subspace given by

$$H^2(\mathbb{T}) := \overline{span}\{e_n : n \ge 0\}.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

└─Isometries and The Toeplitz Algebra

└─A Better Representation

The functions $e_n(z) := z^n$ for $n \in \mathbb{Z}$ form an orthonormal basis for $L^2(\mathbb{T})$ with normalized Lebesgue measure.

Definition

The **Hardy Space** $H^2(\mathbb{T})$ is subspace given by

$$H^2(\mathbb{T}) := \overline{span}\{e_n : n \ge 0\}.$$

Definition

If $f \in L^{\infty}(\mathbb{T})$, define $M_f \in \mathscr{B}(L^2(\mathbb{T}))$ via

$$M_f(g) = fg \qquad \forall g \in L^2(\mathbb{T}).$$

└─Isometries and The Toeplitz Algebra

└─A Better Representation

The functions $e_n(z) := z^n$ for $n \in \mathbb{Z}$ form an orthonormal basis for $L^2(\mathbb{T})$ with normalized Lebesgue measure.

Definition

The **Hardy Space** $H^2(\mathbb{T})$ is subspace given by

$$H^2(\mathbb{T}) := \overline{span}\{e_n : n \ge 0\}.$$

Definition

If
$$f \in L^{\infty}(\mathbb{T})$$
, define $M_f \in \mathscr{B}(L^2(\mathbb{T}))$ via

$$M_f(g) = fg \qquad \forall g \in L^2(\mathbb{T}).$$

The **Toeplitz operator** $T_f \in \mathscr{B}(H^2(\mathbb{T}))$ is

$$T_f := P_{H^2(\mathbb{T})} M_f \mid_{H^2(\mathbb{T})} .$$

- LIsometries and The Toeplitz Algebra
 - LA Better Representation

Remark

• The shift $S \in \mathscr{B}(\ell^2(\mathbb{N}))$ is unitarily equivalent to $T_z \in \mathscr{B}(H^2(\mathbb{T})).$

- Lisometries and The Toeplitz Algebra

Remark

• The shift $S \in \mathscr{B}(\ell^2(\mathbb{N}))$ is unitarily equivalent to $T_z \in \mathscr{B}(H^2(\mathbb{T})).$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Hence, $C^*(S) \cong C^*(T_z)$.

- └─Isometries and The Toeplitz Algebra
 - └─A Better Representation

Remark

- The shift $S \in \mathscr{B}(\ell^2(\mathbb{N}))$ is unitarily equivalent to $T_z \in \mathscr{B}(H^2(\mathbb{T})).$
- Hence, $C^*(S) \cong C^*(T_z)$.

Theorem (Coburn)

We have

$$C^*(T_z) = \{T_f + K : f \in C(\mathbb{T}), K \in \mathscr{K}(H^2(\mathbb{T}))\}.$$

Moreover, if $A \in C^*(T_z)$, $A = T_f + K$ for exactly one $f \in C(\mathbb{T})$ and $K \in \mathscr{K}(H^2(\mathbb{T}))$.

- └─Isometries and The Toeplitz Algebra
 - └─A Better Representation

Remark

- The shift $S \in \mathscr{B}(\ell^2(\mathbb{N}))$ is unitarily equivalent to $T_z \in \mathscr{B}(H^2(\mathbb{T})).$
- Hence, $C^*(S) \cong C^*(T_z)$.

Theorem (Coburn)

We have

$$C^*(T_z) = \{T_f + K : f \in C(\mathbb{T}), K \in \mathscr{K}(H^2(\mathbb{T}))\}.$$

Moreover, if $A \in C^*(T_z)$, $A = T_f + K$ for exactly one $f \in C(\mathbb{T})$ and $K \in \mathscr{K}(H^2(\mathbb{T}))$. Further, $\mathscr{K}(H^2(\mathbb{T}))$ is the unique minimal ideal of $C^*(T_z)$.

- └─Isometries and The Toeplitz Algebra
 - └─A Better Representation

Remark

- The shift $S \in \mathscr{B}(\ell^2(\mathbb{N}))$ is unitarily equivalent to $T_z \in \mathscr{B}(H^2(\mathbb{T})).$
- Hence, $C^*(S) \cong C^*(T_z)$.

Theorem (Coburn)

We have

$$C^*(T_z) = \{T_f + K : f \in C(\mathbb{T}), K \in \mathscr{K}(H^2(\mathbb{T}))\}.$$

Moreover, if $A \in C^*(T_z)$, $A = T_f + K$ for exactly one $f \in C(\mathbb{T})$ and $K \in \mathscr{K}(H^2(\mathbb{T}))$. Further, $\mathscr{K}(H^2(\mathbb{T}))$ is the unique minimal ideal of $C^*(T_z)$. Also $I - SS^*, I - S^*S \in \mathscr{K}(\mathscr{H})$,

- └─Isometries and The Toeplitz Algebra
 - └─A Better Representation

Remark

- The shift $S \in \mathscr{B}(\ell^2(\mathbb{N}))$ is unitarily equivalent to $T_z \in \mathscr{B}(H^2(\mathbb{T})).$
- Hence, $C^*(S) \cong C^*(T_z)$.

Theorem (Coburn)

We have

$$C^*(T_z) = \{T_f + K : f \in C(\mathbb{T}), K \in \mathscr{K}(H^2(\mathbb{T}))\}.$$

Moreover, if $A \in C^*(T_z)$, $A = T_f + K$ for exactly one $f \in C(\mathbb{T})$ and $K \in \mathscr{K}(H^2(\mathbb{T}))$. Further, $\mathscr{K}(H^2(\mathbb{T}))$ is the unique minimal ideal of $C^*(T_z)$. Also $I - SS^*, I - S^*S \in \mathscr{K}(\mathscr{H})$, yielding

$$0 \longrightarrow \mathscr{K}(H^2(\mathbb{T})) \xrightarrow{\iota} C^*(T_z) \xrightarrow{\pi} C(\mathbb{T}) \longrightarrow 0$$

- Background and General Program
 Basic Elements of Functional Analysis
 General Program
- 2 Isometries and The Toeplitz Algebra
 Decomposition of Isometries
 A Better Representation
- 3 Left Invertible Operators and Cowen-Douglas Operators
 Analytic Left Invertible
 - Cowen-Douglas Operators
- 4 Examples and Classification
 - Compact Operators and the Structure of \mathfrak{A}_T
 - Examples from Subnormal Operators
 - Classification for dim $\ker(T^*) = 1$
- 5 Future Work

Left Invertible Operators and Cowen-Douglas Operators

∟_{Analytic} Left Invertible

Remark

General left invertibles have no Wold decomposition:

$$\mathscr{H} \neq \left(\bigcap_{n} T^{n} \mathscr{H}\right) \oplus \left(\bigvee_{n} T^{n} \operatorname{ker}(T^{*})\right)$$

Left Invertible Operators and Cowen-Douglas Operators

∟_{Analytic} Left Invertible

Remark

General left invertibles have no Wold decomposition:

$$\mathscr{H} \neq \left(\bigcap_{n} T^{n} \mathscr{H}\right) \oplus \left(\bigvee_{n} T^{n} \operatorname{ker}(T^{*})\right)$$

Example

Let $\mathscr{H} = \ell^2(\mathbb{N}) \oplus \ell^2(\mathbb{Z})$, and define $T \in \mathscr{B}(\mathscr{H})$ as

$$T = \begin{pmatrix} S & 0\\ \iota & U \end{pmatrix}$$

イロト (日下 (日下 (日下)))

U is the bilateral shift on $\ell^2(\mathbb{Z})$ and ι is inclusion.

Left Invertible Operators and Cowen-Douglas Operators

└─Analytic Left Invertible

Remark

General left invertibles have no Wold decomposition:

$$\mathscr{H} \neq \left(\bigcap_{n} T^{n} \mathscr{H}\right) \oplus \left(\bigvee_{n} T^{n} \operatorname{ker}(T^{*})\right)$$

Example

Let $\mathscr{H} = \ell^2(\mathbb{N}) \oplus \ell^2(\mathbb{Z})$, and define $T \in \mathscr{B}(\mathscr{H})$ as

$$T = \begin{pmatrix} S & 0\\ \iota & U \end{pmatrix}$$

U is the bilateral shift on $\ell^2(\mathbb{Z})$ and ι is inclusion.

Definition

A left invertible operator T is called **analytic** if

$$\bigcap_{n} T^{n} \mathscr{H} = 0.$$

Left Invertible Operators and Cowen-Douglas Operators

└─Analytic Left Invertible

Remark

If V is an analytic isometry (U = 0 in Wold-decomposition), dim ker $(V^*) = n$ and $\{e_{i,0}\}_{i=1}^n$ is an orthonormal basis for ker (V^*) , then

$$e_{i,j} = V^j(e_{i,0})$$

イロト (日下 (日下 (日下)))

 $i = 1, \ldots n, j = 0, 1, \ldots$ is an orthonormal basis for \mathcal{H} .

Left Invertible Operators and Cowen-Douglas Operators

└─Analytic Left Invertible

Remark

If V is an analytic isometry (U = 0 in Wold-decomposition), dim ker $(V^*) = n$ and $\{e_{i,0}\}_{i=1}^n$ is an orthonormal basis for ker (V^*) , then

$$e_{i,j} = V^j(e_{i,0})$$

 $i = 1, \ldots n, j = 0, 1, \ldots$ is an orthonormal basis for \mathcal{H} .

Theorem (D-)

Let T be an analytic left invertible with dim ker $(T^*) = n$ for some positive integer n. Let $\{x_{i,0}\}_{i=1}^n$ be an orthonormal basis for ker (T^*) . Then

Left Invertible Operators and Cowen-Douglas Operators

└─Analytic Left Invertible

Remark

If V is an analytic isometry (U = 0 in Wold-decomposition), dim ker $(V^*) = n$ and $\{e_{i,0}\}_{i=1}^n$ is an orthonormal basis for ker (V^*) , then

$$e_{i,j} = V^j(e_{i,0})$$

 $i = 1, \ldots n, j = 0, 1, \ldots$ is an orthonormal basis for \mathcal{H} .

Theorem (D-)

Let T be an analytic left invertible with dim ker $(T^*) = n$ for some positive integer n. Let $\{x_{i,0}\}_{i=1}^n$ be an orthonormal basis for ker (T^*) . Then

$$x_{i,j} := T^j(x_{i,0})$$

 $i = 1, \ldots n, j = 0, 1, \ldots$ is a Schauder basis for \mathcal{H} .

Left Invertible Operators and Cowen-Douglas Operators

└_Cowen-Douglas Operators

Definition

Given $\Omega \subset \mathbb{C}$ open, $n \in \mathbb{N}$, we say that R is **Cowen-Douglas**, and write $R \in B_n(\Omega)$ if

イロト (日下 (日下 (日下)))

1
$$\Omega \subset \sigma(R) = \{\lambda \subset \mathbb{C} : R - \lambda \text{ not invertible}\}$$

2
$$(R - \lambda)\mathscr{H} = \mathscr{H}$$
 for all $\lambda \in \Omega$

3 dim
$$(\ker(R - \lambda)) = n$$
 for all $\lambda \in \Omega$.

4
$$\bigvee_{\lambda \in \Omega} \ker(R - \lambda) = \mathscr{H}$$

Left Invertible Operators and Cowen-Douglas Operators

└─Cowen-Douglas Operators

Definition

Given $\Omega \subset \mathbb{C}$ open, $n \in \mathbb{N}$, we say that R is **Cowen-Douglas**, and write $R \in B_n(\Omega)$ if

1
$$\Omega \subset \sigma(R) = \{\lambda \subset \mathbb{C} : R - \lambda \text{ not invertible}\}$$

2
$$(R - \lambda)\mathscr{H} = \mathscr{H}$$
 for all $\lambda \in \Omega$

3 dim
$$(\ker(R - \lambda)) = n$$
 for all $\lambda \in \Omega$.

4
$$\bigvee_{\lambda \in \Omega} \ker(R - \lambda) = \mathscr{H}$$

Theorem (D-)

Let $T \in \mathscr{B}(\mathscr{H})$ be left invertible operator with dim ker $(T^*) = n$, for $n \geq 1$. Then the following are equivalent:

Left Invertible Operators and Cowen-Douglas Operators

└─Cowen-Douglas Operators

Definition

Given $\Omega \subset \mathbb{C}$ open, $n \in \mathbb{N}$, we say that R is **Cowen-Douglas**, and write $R \in B_n(\Omega)$ if

1
$$\Omega \subset \sigma(R) = \{\lambda \subset \mathbb{C} : R - \lambda \text{ not invertible}\}$$

2
$$(R - \lambda)\mathscr{H} = \mathscr{H}$$
 for all $\lambda \in \Omega$

3 dim
$$(\ker(R - \lambda)) = n$$
 for all $\lambda \in \Omega$.

4
$$\bigvee_{\lambda \in \Omega} \ker(R - \lambda) = \mathscr{H}$$

Theorem (D-)

Let $T \in \mathscr{B}(\mathscr{H})$ be left invertible operator with dim ker $(T^*) = n$, for $n \geq 1$. Then the following are equivalent:

1 T is an analytic

Left Invertible Operators and Cowen-Douglas Operators

└─Cowen-Douglas Operators

Definition

Given $\Omega \subset \mathbb{C}$ open, $n \in \mathbb{N}$, we say that R is **Cowen-Douglas**, and write $R \in B_n(\Omega)$ if

1
$$\Omega \subset \sigma(R) = \{\lambda \subset \mathbb{C} : R - \lambda \text{ not invertible}\}$$

2
$$(R - \lambda)\mathscr{H} = \mathscr{H}$$
 for all $\lambda \in \Omega$

3 dim
$$(\ker(R - \lambda)) = n$$
 for all $\lambda \in \Omega$.

4
$$\bigvee_{\lambda \in \Omega} \ker(R - \lambda) = \mathscr{H}$$

Theorem (D-)

Let $T \in \mathscr{B}(\mathscr{H})$ be left invertible operator with dim ker $(T^*) = n$, for $n \geq 1$. Then the following are equivalent:

1 T is an analytic

2 There exists $\epsilon > 0$ such that $T^* \in B_n(\Omega)$ for $\Omega = \{z : |z| < \epsilon\}$

THEFTER E 990

Left Invertible Operators and Cowen-Douglas Operators

Cowen-Douglas Operators

Definition

Given $\Omega \subset \mathbb{C}$ open, $n \in \mathbb{N}$, we say that R is **Cowen-Douglas**, and write $R \in B_n(\Omega)$ if

1
$$\Omega \subset \sigma(R) = \{\lambda \subset \mathbb{C} : R - \lambda \text{ not invertible}\}$$

2
$$(R - \lambda)\mathscr{H} = \mathscr{H}$$
 for all $\lambda \in \Omega$

3 dim
$$(\ker(R - \lambda)) = n$$
 for all $\lambda \in \Omega$.

4
$$\bigvee_{\lambda \in \Omega} \ker(R - \lambda) = \mathscr{H}$$

Theorem (D-)

Let $T \in \mathscr{B}(\mathscr{H})$ be left invertible operator with dim ker $(T^*) = n$, for $n \geq 1$. Then the following are equivalent:

- **1** T is an analytic
- **2** There exists $\epsilon > 0$ such that $T^* \in B_n(\Omega)$ for $\Omega = \{z : |z| < \epsilon\}$
- **3** There exists $\epsilon > 0$ such that $T^{\dagger} \in B_n(\Omega)$ for $\Omega = \{z : |z| < \epsilon\}$

500

Left Invertible Operators and Cowen-Douglas Operators

└─Cowen-Douglas Operators

Analytic Model

• If $R \in B_n(\Omega)$, there is a analytic map $\gamma : \Omega \to \mathcal{H}$ such that $\gamma(\lambda) \in \ker(R - \lambda)$.

Left Invertible Operators and Cowen-Douglas Operators

└─Cowen-Douglas Operators

Analytic Model

- If $R \in B_n(\Omega)$, there is a analytic map $\gamma : \Omega \to \mathscr{H}$ such that $\gamma(\lambda) \in \ker(R \lambda)$.
- For each $f \in \mathscr{H}$, define a holomorphic function \hat{f} over $\Omega^* := \{\overline{z} : z \in \Omega\}$ via

$$\hat{f}(\lambda) = \langle f, \gamma(\overline{\lambda}) \rangle.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ = ● のへ⊙

Left Invertible Operators and Cowen-Douglas Operators

└─Cowen-Douglas Operators

Analytic Model

- If $R \in B_n(\Omega)$, there is a analytic map $\gamma : \Omega \to \mathscr{H}$ such that $\gamma(\lambda) \in \ker(R \lambda)$.
- For each $f \in \mathscr{H}$, define a holomorphic function \hat{f} over $\Omega^* := \{\overline{z} : z \in \Omega\}$ via

$$\hat{f}(\lambda) = \langle f, \gamma(\overline{\lambda}) \rangle.$$

◆□▶ ◆□▶ ★∃▶ ★∃▶ = 三 - のへで

• Let $\widehat{\mathscr{H}} = \{\widehat{f} : f \in \mathscr{H}\}$. Equip with $\langle \widehat{f}, \widehat{g} \rangle = \langle f, g \rangle$.

Left Invertible Operators and Cowen-Douglas Operators

└─Cowen-Douglas Operators

Analytic Model

- If $R \in B_n(\Omega)$, there is a analytic map $\gamma : \Omega \to \mathscr{H}$ such that $\gamma(\lambda) \in \ker(R \lambda)$.
- For each $f \in \mathscr{H}$, define a holomorphic function \hat{f} over $\Omega^* := \{\overline{z} : z \in \Omega\}$ via

$$\hat{f}(\lambda) = \langle f, \gamma(\overline{\lambda}) \rangle.$$

Let *ℋ* = {*f* : *f* ∈ *ℋ*}. Equip with ⟨*f*, *ĝ*⟩ = ⟨*f*, *g*⟩.
Then U : *ℋ* → *ℋ* via Uf = *f* is unitary, and

$$(UTf)(\lambda) = \langle Tf, \gamma(\overline{\lambda}) \rangle = \langle f, \overline{\lambda}\gamma(\overline{\lambda}) \rangle = (M_z Uf)(\lambda)$$

Left Invertible Operators and Cowen-Douglas Operators

└─Cowen-Douglas Operators

Corollary

• T is unitarily equivalent to M_z on a RKHS of analytic functions $\widehat{\mathscr{H}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Left Invertible Operators and Cowen-Douglas Operators

└─Cowen-Douglas Operators

Corollary

- T is unitarily equivalent to M_z on a RKHS of analytic functions $\widehat{\mathscr{H}}$.
- Under this identification, T^{\dagger} becomes "division by z".

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Left Invertible Operators and Cowen-Douglas Operators

└─Cowen-Douglas Operators

Corollary

- T is unitarily equivalent to M_z on a RKHS of analytic functions $\widehat{\mathscr{H}}$.
- Under this identification, T^{\dagger} becomes "division by z".

Lemma

If $T \in \mathscr{B}(\mathscr{H})$ is left invertible with dim ker $(T^*) = n$, then

$$Alg(T,T^{\dagger}) = \left\{ F + \sum_{n=0}^{N} \alpha_n T^n + \sum_{m=1}^{M} \beta_m T^{\dagger^m} : F \text{ is finite rank} \right\}.$$

Left Invertible Operators and Cowen-Douglas Operators

└─Cowen-Douglas Operators

Corollary

- T is unitarily equivalent to M_z on a RKHS of analytic functions $\widehat{\mathscr{H}}$.
- Under this identification, T^{\dagger} becomes "division by z".

Lemma

If $T \in \mathscr{B}(\mathscr{H})$ is left invertible with dim $\ker(T^*) = n$, then

$$Alg(T,T^{\dagger}) = \left\{ F + \sum_{n=0}^{N} \alpha_n T^n + \sum_{m=1}^{M} \beta_m T^{\dagger^m} : F \text{ is finite rank} \right\}.$$

Heuristic

 \mathfrak{A}_T is compact perturbations of multiplication operators with symbols Laurent series centered at zero.

- Background and General Program
 Basic Elements of Functional Analysis
 General Program
- 2 Isometries and The Toeplitz Algebra
 Decomposition of Isometries
 A Better Representation
- 3 Left Invertible Operators and Cowen-Douglas Operators
 Analytic Left Invertible
 Cowen-Douglas Operators
- 4 Examples and Classification
 - \blacksquare Compact Operators and the Structure of \mathfrak{A}_T
 - Examples from Subnormal Operators
 - Classification for dim $\ker(T^*) = 1$

Examples and Classification

 \square Compact Operators and the Structure of \mathfrak{A}_T

Theorem (D-)

If T is an analytic left invertible with dim ker $(T^*) = 1$, then \mathfrak{A}_T contains the compact operators $\mathscr{K}(\mathscr{H})$. Moreover, $\mathscr{K}(\mathscr{H})$ is a minimal ideal of \mathfrak{A}_T .

◆□▶ ◆□▶ ◆□▶ ◆□▶ = ● のへ⊙

Examples and Classification

 \sqcup Compact Operators and the Structure of \mathfrak{A}_T

Theorem (D-)

If T is an analytic left invertible with dim ker $(T^*) = 1$, then \mathfrak{A}_T contains the compact operators $\mathscr{K}(\mathscr{H})$. Moreover, $\mathscr{K}(\mathscr{H})$ is a minimal ideal of \mathfrak{A}_T .

Corollary

 $I - TT^{\dagger}, I - T^{\dagger}T \in \mathscr{K}(\mathscr{H}). \ \ Thus, \ \pi(T)^{-1} = \pi(T^{\dagger}).$

Examples and Classification

 \sqsubset Compact Operators and the Structure of \mathfrak{A}_T

Theorem (D-)

If T is an analytic left invertible with dim ker $(T^*) = 1$, then \mathfrak{A}_T contains the compact operators $\mathscr{K}(\mathscr{H})$. Moreover, $\mathscr{K}(\mathscr{H})$ is a minimal ideal of \mathfrak{A}_T .

Corollary

 $I - TT^{\dagger}, I - T^{\dagger}T \in \mathscr{K}(\mathscr{H}).$ Thus, $\pi(T)^{-1} = \pi(T^{\dagger}).$ Hence, we have the following:

$$0 \longrightarrow \mathscr{K}(\mathscr{H}) \xrightarrow{\iota} \mathfrak{A}_T \xrightarrow{\pi} \mathscr{B} \longrightarrow 0$$

◆□ ▶ ◆□ ▶ ★ □ ▶ ★ □ ▶ ● ○ ○ ○

where $\mathscr{B} = \overline{Alg} \{ \pi(T), \pi(T^{\dagger}) \}.$

Examples and Classification

L_{Examples} from Subnormal Operators

Definition

• An operator $N \in \mathscr{B}(\mathscr{H})$ is **normal** if $NN^* = N^*N$.

Examples and Classification

LExamples from Subnormal Operators

Definition

- An operator $N \in \mathscr{B}(\mathscr{H})$ is **normal** if $NN^* = N^*N$.
- An operator $S \in \mathscr{B}(\mathscr{H})$ is essentially normal if $\pi(S)$ is normal in $\mathscr{B}(\mathscr{H})/\mathscr{K}(\mathscr{H})$.

Examples and Classification

Examples from Subnormal Operators

Definition

- An operator $N \in \mathscr{B}(\mathscr{H})$ is **normal** if $NN^* = N^*N$.
- An operator $S \in \mathscr{B}(\mathscr{H})$ is essentially normal if $\pi(S)$ is normal in $\mathscr{B}(\mathscr{H})/\mathscr{K}(\mathscr{H})$.
- An operator $S \in \mathscr{B}(\mathscr{H})$ is **subnormal** if it has a normal extension:

$$N = \begin{pmatrix} S & A \\ 0 & B \end{pmatrix} \in \mathscr{B}(\mathscr{K})$$

Examples and Classification

Examples from Subnormal Operators

Definition

- An operator $N \in \mathscr{B}(\mathscr{H})$ is **normal** if $NN^* = N^*N$.
- An operator $S \in \mathscr{B}(\mathscr{H})$ is essentially normal if $\pi(S)$ is normal in $\mathscr{B}(\mathscr{H})/\mathscr{K}(\mathscr{H})$.
- An operator $S \in \mathscr{B}(\mathscr{H})$ is **subnormal** if it has a normal extension:

$$N = \begin{pmatrix} S & A \\ 0 & B \end{pmatrix} \in \mathscr{B}(\mathscr{K})$$

The operator N is said to be a **minimal normal** extension if \mathcal{K} has no proper subspace reducing N and containing \mathcal{H} .

Examples and Classification

L_{Examples} from Subnormal Operators

Definition

Let μ be a scalar-valued spectral measure associated to N, and $f \in L^{\infty}(\sigma(N), \mu)$.

イロト (日下 (日下 (日下)))

Examples and Classification

Examples from Subnormal Operators

Definition

Let μ be a scalar-valued spectral measure associated to N, and $f \in L^{\infty}(\sigma(N), \mu)$. Define $T_f \in \mathscr{B}(\mathscr{H})$ via

$$T_f := P(f(N)) \mid_{\mathscr{H}}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where P is the orthogonal projection of \mathscr{K} onto \mathscr{H} .

Examples and Classification

Examples from Subnormal Operators

Definition

Let μ be a scalar-valued spectral measure associated to N, and $f \in L^{\infty}(\sigma(N), \mu)$. Define $T_f \in \mathscr{B}(\mathscr{H})$ via

$$T_f := P(f(N)) \mid_{\mathscr{H}}$$

where P is the orthogonal projection of \mathscr{K} onto \mathscr{H} .

Theorem (Keough, Olin and Thomson)

If S is an irreducible, subnormal, essentially normal operator, such that $\sigma(N) = \sigma_e(S)$. Then

 $C^*(S) = \{T_f + K : f \in C(\sigma_e(S)), K \in \mathscr{K}(\mathscr{H})\}.$

Moreover, then each element has $A \in C^*(S)$ has a unique representation of the form $T_f + K$.

Examples and Classification

LExamples from Subnormal Operators

Theorem (D-)

Let S be an analytic left invertible, dim ker $(S^*) = 1$, essentially normal, subnormal operator with N := mne(S) such that $\sigma(N) = \sigma_e(S)$.

Examples and Classification

LExamples from Subnormal Operators

Theorem (D-)

Let S be an analytic left invertible, dim ker $(S^*) = 1$, essentially normal, subnormal operator with N := mne(S) such that $\sigma(N) = \sigma_e(S)$. Set

$$\mathscr{B} = \overline{Alg}\{z, z^{-1}\}$$

うして ふゆ アメリア トレー ひゃく

on $\sigma_e(S)$. Then

Examples and Classification

Examples from Subnormal Operators

Theorem (D-)

Let S be an analytic left invertible, dim ker(S^{*}) = 1, essentially normal, subnormal operator with N := mne(S) such that $\sigma(N) = \sigma_e(S)$. Set $\mathscr{B} = \overline{Alg}\{z, z^{-1}\}$

on $\sigma_e(S)$. Then

$$\mathfrak{A}_S = \{T_f + K : f \in \mathscr{B}, K \in \mathscr{K}(\mathscr{H})\}$$

うして ふゆ アメリア トレー ひゃく

Moreover, the representation of each element as $T_f + K$ is unique.

Examples and Classification

Theorem (D-)

Let T_i , i = 1, 2 be left invertible (analytic, dim ker $(T_i^*) = 1$) with $\mathfrak{A}_i := \mathfrak{A}_{T_i}$. Suppose that $\phi : \mathfrak{A}_1 \to \mathfrak{A}_2$ is a bounded isomorphism.

Examples and Classification

Theorem (D-)

Let T_i , i = 1, 2 be left invertible (analytic, dim ker $(T_i^*) = 1$) with $\mathfrak{A}_i := \mathfrak{A}_{T_i}$. Suppose that $\phi : \mathfrak{A}_1 \to \mathfrak{A}_2$ is a bounded isomorphism. Then $\phi = Ad_V$ for some invertible $V \in \mathscr{B}(\mathscr{H})$. That is, for all $A \in \mathfrak{A}_1$,

$$\phi(A) = VAV^{-1}$$

Examples and Classification

Theorem (D-)

Let T_i , i = 1, 2 be left invertible (analytic, dim ker $(T_i^*) = 1$) with $\mathfrak{A}_i := \mathfrak{A}_{T_i}$. Suppose that $\phi : \mathfrak{A}_1 \to \mathfrak{A}_2$ is a bounded isomorphism. Then $\phi = Ad_V$ for some invertible $V \in \mathscr{B}(\mathscr{H})$. That is, for all $A \in \mathfrak{A}_1$,

$$\phi(A) = VAV^{-1}$$

Remark

To distinguish these algebras by isomorphism classes, we need to classify the similarity orbit:

$$\mathcal{S}(T) := \{ VTV^{-1} : V \in \mathscr{B}(\mathscr{H}) \text{ is invertible} \}$$

Examples and Classification

Remark

• To determine $\mathcal{S}(T)$, suffices to identify $\mathcal{S}(T^*)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Examples and Classification

Remark

- To determine $\mathcal{S}(T)$, suffices to identify $\mathcal{S}(T^*)$.
- Recall that $T^* \in B_1(\Omega)$ for some disc Ω centered at the origin.

Examples and Classification

Remark

- To determine $\mathcal{S}(T)$, suffices to identify $\mathcal{S}(T^*)$.
- Recall that $T^* \in B_1(\Omega)$ for some disc Ω centered at the origin.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Determining the similarity orbit of Cowen-Douglas operators is a classic problem.

Examples and Classification

Remark

- To determine $\mathcal{S}(T)$, suffices to identify $\mathcal{S}(T^*)$.
- Recall that $T^* \in B_1(\Omega)$ for some disc Ω centered at the origin.
- Determining the similarity orbit of Cowen-Douglas operators is a classic problem.

Theorem (Jiang, Wang, Guo, Ji)

Let $A, B \in B_1(\Omega)$. Then A is similar to B if and only if

 $K_0(\{A \oplus B\}') \cong \mathbb{Z}$

- Background and General Program
 Basic Elements of Functional Analysis
 General Program
- 2 Isometries and The Toeplitz Algebra
 Decomposition of Isometries
 A Better Representation
- 3 Left Invertible Operators and Cowen-Douglas Operators
 Analytic Left Invertible
 Cowen Douglas Operators
 - Cowen-Douglas Operators
- 4 Examples and Classification
 - Compact Operators and the Structure of \mathfrak{A}_T
 - Examples from Subnormal Operators
 - Classification for dim $\ker(T^*) = 1$
- 5 Future Work

• Determine the isomorphism classes for $\dim \ker(T^*) > 1$.

• Determine the isomorphism classes for $\dim \ker(T^*) > 1$.

• Is $\operatorname{Rad}(\mathfrak{A}_T/\mathscr{K}(\mathscr{H})) = 0$?

• Determine the isomorphism classes for $\dim \ker(T^*) > 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Is $\operatorname{Rad}(\mathfrak{A}_T/\mathscr{K}(\mathscr{H})) = 0$?
- Any hope for non-analytic left invertibles?

- Determine the isomorphism classes for $\dim \ker(T^*) > 1$.
- Is $\operatorname{Rad}(\mathfrak{A}_T/\mathscr{K}(\mathscr{H})) = 0$?
- Any hope for non-analytic left invertibles?
- The closure of the similarity orbit of T, $\overline{\mathcal{S}(T)}$ can be expressed by spectral, Fredholm, and algebraic properties of T. If $\overline{\mathcal{S}(T_1)} = \overline{\mathcal{S}(T_2)}$, is $\mathfrak{A}_{T_1} \cong \mathfrak{A}_{T_2}$?

- Determine the isomorphism classes for $\dim \ker(T^*) > 1$.
- Is $\operatorname{Rad}(\mathfrak{A}_T/\mathscr{K}(\mathscr{H})) = 0$?
- Any hope for non-analytic left invertibles?
- The closure of the similarity orbit of T, $\overline{\mathcal{S}(T)}$ can be expressed by spectral, Fredholm, and algebraic properties of T. If $\overline{\mathcal{S}(T_1)} = \overline{\mathcal{S}(T_2)}$, is $\mathfrak{A}_{T_1} \cong \mathfrak{A}_{T_2}$?
- Investigate other algebras that arise from graphs e.g. "Cuntz algebra".

